Sabtu, 23 Desember 2017

PIPELINING dan RISC



Definisi
Pipelining adalah suatu teknik implementasi dengan mana berbagai instruksi dapat dilaksanakan secara tumpang tindih (overlapped; hal ini mengambil keuntungan paralelisme yang ada di antara tindakan yang diperlukan untuk mengeksekusi suatu instruksi.
Teknik pipeline ini dapat diterapkan pada berbagai tingkatan dalam sistem komputer. Bisa pada level yang tinggi, misalnya program aplikasi, sampai pada tingkat yang rendah, seperti pada instruksi yang dijalankan oleh microprocessor.
Pipeline Unit Arithmetic    : berguna untuk operasi vector
Pipeline Unit Instruction    : berguna untuk komputer yang mempunyai set instruksi yang sederhana

Tahapan instruksi pipeline :
1.      Mengambil instruksi dan membuffferkannya
2.      Ketika tahapan kedua bebas tahapan pertama mengirimkan instruksi yang dibufferkan tersebut.
3.      Pada saat tahapan kedua sedang mengeksekusi instruksi, tahapan pertama memanfaatkan siklus memori yang tidak dipakai untuk mengambil dan membuffferkan instruksi berikutnya.
4.      Instruksi-instruksi dari program yang sudah berurutan kemudian satu-persatu memasuki pipeline prosesor untuk diproses. Setiap tingkat pipeline memerlukan satu clock cycle untuk menyelesaikan satu instruksi dan meneruskan hasilnya ke pipeline berikutnya.
5.      Karena beberapa instruksi diproses secara bersamaan ada kemungkinan instruksi tersebut sama-sama memerlukan resource yang sama, sehingga diperlukan adanya pengaturan yang tepat agar proses tetap berjalan dengan benar.
6.      Ketergantungan terhadap data, bisa muncul, misalnya instruksi yang berurutan memerlukan data dari instruksi yang sebelumnya.
7.      Kasus Jump, juga perlu perhatian, karena ketika sebuah instruksi meminta untuk melompat ke suatu lokasi memori tertentu, akan terjadi perubahan program counter, sedangkan instruksi yang sedang berada dalam salah satu tahap proses yang berikutnya mungkin tidak mengharapkan terjadinya perubahan program counter.
Keuntungan Pipelining:
1.      Waktu siklus prosesor berkurang, sehingga meningkatkan tingkat instruksi dalam kebanyakan kasus( lebih cepat selesai).
2.      Beberapa combinational sirkuit seperti penambah atau pengganda dapat dibuat lebih cepat dengan menambahkan lebih banyak sirkuit. Jika pipelining digunakan sebagai pengganti, hal itu dapat menghemat sirkuit & combinational yang lebih kompleks.
3.      Pemrosesan dapat dilakukan lebih cepat, dikarenakan beberapa proses dilakukan secara bersamaan dalam satu waktu.
Kerugian Pipeline:
1.      Pipelined prosesor menjalankan beberapa instruksi pada satu waktu. Jika ada beberapa cabang yang mengalami penundaan cabang (penundaan memproses data) dan akibatnya proses yang dilakukan cenderung lebih lama.
2.      Instruksi latency di non-pipelined prosesor sedikit lebih rendah daripada dalam pipelined setara. Hal ini disebabkan oleh fakta bahwa intruksi ekstra harus ditambahkan ke jalur data dari prosesor pipeline.
3.      Kinerja prosesor di pipeline jauh lebih sulit untuk meramalkan dan dapat bervariasi lebih luas di antara program yang berbeda.
4.      Karena beberapa instruksi diproses secara bersamaan ada kemungkinan instruksi tersebut sama-sama memerlukan resource yang sama, sehingga diperlukan adanya pengaturan yang tepat agar proses tetap berjalan dengan benar.
5.      Sedangkan ketergantungan terhadap data, bisa muncul, misalnya instruksi yang berurutan memerlukan data dari instruksi yang sebelumnya.
6.      Kasus Jump, juga perlu perhatian, karena ketika sebuah instruksi meminta untuk melompat ke suatu lokasi memori tertentu, akan terjadi perubahan program counter, sedangkan instruksi yang sedang berada dalam salah satu tahap proses yang berikutnya mungkin tidak mengharapkan terjadinya perubahan program counter.

RICS (Reduced Instruction Set Computer)
RICS singkatan dari Reduced Instruction Set Computer. Merupakan bagian dari arsitektur mikroprosessor, berbentuk kecil dan berfungsi untuk negeset istruksi dalam komunikasi diantara arsitektur yang lainnya. Reduced Instruction Set Computer (RISC, bahasa Inggris untuk “Komputasi set instruksi yang disederhanakan”) adalah filosofi desain untuk prosesor komputer, yang lebih suka menggunakan instruksi mesin sederhana.
Sebuah set instruksi RISC dibebaskan dari perintah yang kompleks – terutama mereka pada saat menggabungkan akses memori (perlahan) dengan operasi aritmatika (cepat). Dengan demikian, tingkat pipa prosesor (processor pipeline) dapat disetel dengan baik, langkah menjadi lebih pendek, pipeline dapat di clock lebih cepat dan dimanfaatkan lebih berimbang, karena jumlah “penyumbatan” (stalls) berkurang. Alhasil, karakteristik ini menghasilkan keuntungan besar dalam efisiensi. Kecuali itu, perintah sederhana juga dapat dikodekan dengan lebar yang seragam, dan dibandingkan arsitektur CISC upaya dekoder menjadi lebih rendah, sehingga latensi pipeline jauh berkurang.
Set instruksi prosesor CISC biasanya diimplementasikan dalam bentuk microcode, sementara pada prosesor RISC, perintah diterapkan secara individu tertanam. Arsitektur RISC digunakan pada komputer dengan kinerja tinggi, seperti komputer vektor.  Selain digunakan dalam komputer vektor, desain ini juga diimplementasikan pada prosesor komputer lain, seperti pada beberapa mikroprosesor Intel 960, Itanium (IA64) dari Intel Corporation, Alpha AXP dari DEC, R4x00 dari MIPS Corporation, PowerPC dan Arsitektur POWER dari International Business Machine.
Selain itu, RISC juga umum dipakai pada Advanced RISC Machine (ARM) dan StrongARM (termasuk di antaranya adalah Intel XScale), SPARC dan UltraSPARC dari Sun Microsystems, serta PA-RISC dari Hewlett-Packard.
Arsitektur RISC memiliki beberapa karakteristik diantaranya :
1.      Siklus mesin ditentukan oleh waktu yang digunakan untuk mengambil dua buah operand dari register, melakukan operasi ALU, dan menyimpan hasil operasinya kedalam register, dengan demikian instruksi mesin RISC tidak boleh lebih kompleks dan harus dapat mengeksekusi secepat mikroinstruksi pada mesin-mesin CISC.
Dengan menggunakan instruksi sederhana atau instruksi satu siklus hanya dibutuhkan satu mikrokode atau tidak sama sekali, instruksi mesin dapat dihardwired. Instruksi seperti itu akan dieksekusi lebih cepat dibanding yang sejenis pada yang lain karena tidak perlu mengakses penyimapanan kontrol mikroprogram saat eksekusi instruksi berlangsung.
2.      Operasi berbentuk dari register-ke register yang hanya terdiri dari operasi load dan store yang mengakses memori . Fitur rancangan ini menyederhanakan set instruksi sehingga menyederhanakan pula unit control. Keuntungan lainnya memungkinkan optimasi pemakaian register sehingga operand yang sering diakses akan tetap ada di penyimpan berkecepatan tinggi. Penekanan pada operasi register ke register merupakan hal yang unik bagi perancangan RISC.
3.      Penggunaan mode pengalamatan sederhana, hampir sama dengan instruksi menggunakan pengalamatan register,. Beberapa mode tambahan seperti pergeseran dan pe-relatif dapat dimasukkan selain itu banyak mode kompleks dapat disintesis pada perangkat lunak dibanding yang sederhana, selain dapat menyederhanakan sel instruksi dan unit kontrol.
4.      Penggunaan format-format instruksi sederhana, panjang instruksinya tetap dan disesuaikan dengan panjang word. Fitur ini memiliki beberapa kelebihan karena dengan menggunakan field yang tetap pendekodean opcode dan  pengaksesan operand register dapat dilakukan secara bersama-sama

DAFTAR PUSTAKA

Tidak ada komentar:

Posting Komentar